В коммерческих зданиях для поддержания заданных параметров микроклимата используются системы отопления, вентиляции и кондиционирования воздуха. Современные промышленные объекты нуждаются в эффективных решениях, направленных на повышение энергоэффективности и создания комфортной внутренней среды независимо от внешних условий. Чиллеры стали популярным решением на самых разнообразных коммерческих объектах, включая отели, рестораны, больницы, спортивные арены, промышленные и производственные предприятия и т. д. Оборудование способствует передаче тепла из внутренней среды во внешнюю, а теплопередача зависит от физического состояния хладагента, циркулирующего в системе охлаждения.
Как работает чиллер?
Чиллер работает по принципу сжатия или поглощения пара. Он обеспечивает непрерывный поток охлаждающей жидкости к системы технологической воды. Насосная система обеспечивает циркуляцию воды или водно-гликолевого раствора от охладителя к процессу. Эта холодная жидкость поглощает тепло, а после, уже нагретая, возвращается в чиллер.
В установке используется механическая система охлаждения с компрессией пара, которая подключается к системе технологической воды через устройство, называемое испарителем. Хладагент циркулирует через испаритель, компрессор, конденсатор и расширительное устройство чиллера. Термодинамический процесс происходит в каждом из вышеперечисленных компонентов. Испаритель работает как теплообменник, так что тепло передается хладагенту. По мере передачи тепла он испаряется, превращаясь из жидкости с низким давлением в пар, в то время как температура снижается.
Затем хладагент поступает в компрессор, который выполняет несколько функций. Во-первых, он удаляет хладагент из испарителя и гарантирует, что давление в системе остается достаточно низким для поглощения тепла с правильной скоростью. Во-вторых, он повышает давление выходящего пара, чтобы его температура оставалась достаточно высокой для выделения тепла, когда он достигает конденсатора. Хладагент возвращается в жидкое состояние в конденсаторе. Скрытая теплота, выделяемая при переходе хладагента из пара в жидкость, отводится из окружающей среды воздухом или водой. Принцип действия системы с водяным контуром представлен на рисунке ниже.
Существует множество типов хладагентов и применений в зависимости от требуемых температур, но все они работают по основному принципу сжатия и фазового перехода из жидкого состояние в газообразное и обратно. Этот процесс называется цикл охлаждения. Он начинается с того, что в испаритель поступает смесь жидкости и газа под низким давлением. В испарителе тепло технологической воды или водно-гликолевого раствора приводит к кипению хладагента, который превращает его из жидкости низкого давления в газ низкого давления. Газ низкого давления поступает в компрессор, где сжимается до газа высокого давления. Газ под высоким давлением поступает в конденсатор, где окружающий воздух или вода конденсатора отводят тепло, чтобы охладить его до жидкости под высоким давлением. Жидкость под высоким давлением поступает к расширительному клапану, который контролирует количество жидкого хладагента, поступающего в испаритель, тем самым снова начиная цикл охлаждения. Принцип действия системы с воздушным охлаждением представлен на рисунке ниже.
Типы чиллеров
В чиллерах используются два типа конденсаторов: с воздушным и водяным контуром. Первый вид использует окружающий воздух для охлаждения и конденсации горячего газообразного хладагента обратно в жидкость. Он может быть расположен внутри чиллера или снаружи, но в конечном итоге он отводит тепло от чиллера в воздух. В конденсаторе с водяным охлаждением вода из градирни охлаждает и конденсирует хладагент.
Агрегаты с воздушным охлаждением напоминают «радиаторы», охлаждающие автомобильные двигатели. Они используют моторизованный вентилятор, чтобы нагнетать воздух через решетку линий хладагента. Для эффективной работы им требуется температура окружающей среды 35 ° C или ниже, если они специально не предназначены для жарких условий окружающей среды.
Конденсаторы с водяным охлаждением выполняют ту же функцию, что воздушные аналоги, но требуют двух этапов для завершения теплопередачи. Сначала тепло переходит от пара хладагента в воду конденсатора. Затем теплая вода перекачивается в градирню, где технологическое тепло в отводится в атмосферу.
Чиллеры с водяным охлаждением
У чиллеров с водяным охлаждением конденсатор соединен с градирней. Они используются для средних и крупных установок с достаточным водоснабжением. Могут обеспечить более стабильную производительность для коммерческого и промышленного кондиционирования воздуха из-за независимости от колебаний температуры окружающей среды. Размеры установки варьируются от небольших моделей емкостью 20 тонн до моделей на несколько тысяч тонн, которые охлаждают крупнейшие в мире объекты, такие как аэропорты, торговые центры и т.д.
Чиллеры с водяным охлаждением обычно располагаются внутри помещений в среде, защищенной от непогоды, что обеспечивает более длительный срок службы оборудования. Они представляют собой единственный вариант для крупных установок. Дополнительная система градирни потребует больших затрат на монтаж и обслуживание по сравнению с воздушными аналогами.
Чиллеры с воздушным охлаждением
В чиллерах с воздушным охлаждением используется конденсатор, охлаждаемый окружающим воздухом. Они нашли широкое применение в небольших или средних установках, где пространство ограниченно, а вода представляет собой ограниченный ресурс.
Типичная система имеет пропеллерные вентиляторы или механические циклы охлаждения, чтобы втягивать окружающий воздух через оребренный змеевик для конденсации хладагента, что обеспечивает передачу тепла в атмосферу.
Чиллеры с воздушным охлаждением обладают значительным преимуществом в виде более низких затрат на установку и обслуживание. Они занимают меньше места и располагаются вне помещения, что сокращает срок службы наружных элементов. Комплексный характер оборудования снижает затраты на техническое обслуживание. Их относительная простота в сочетании с меньшими требованиями к пространству дает большие преимущества во многих типах установок.
Виды компрессоров
Как известно, для точной работы графика нагрузки чиллера очень важен тип используемых компрессоров. Традиционно в чиллерах большой мощности использовались поршневые или роторно-винтовые компрессоры. Поршневой компрессор имеет много движущихся частей и, как следствие, низкий КПД из-за больших потерь на трение. При работе поршневых компрессоров наблюдается высокий уровень шума и вибрации, а также существует необходимость их регулярного обслуживания. Винтовые компрессоры, в свою очередь, имеют сложную конструкцию и, как следствие, очень высокую стоимость. Производство винтовых компрессоров малорентабельно.
Обслуживание таких компрессоров требует значительных затрат и требует высококвалифицированного персонала. В последние годы на рынке появились компрессоры спирального типа, лишенные специфических недостатков поршневых и винтовых моделей. Они обладают высокой энергоэффективностью, низким уровнем шума и вибрации и не требуют обслуживания. Компрессоры этого типа просты по конструкции, очень надежны и в то же время недорогие. Однако производительность спиральных компрессоров обычно не превышает 40 кВт.
Текущее и профилактическое обслуживание
Затраты на чиллер составляют значительную часть счетов за коммунальные услуги здания. Система будет работать более эффективно за счет надлежащего текущего обслуживания, оно включает в себя:
- Осмотр и очистку змеевиков конденсатора. Теплопередача оказывает большое влияние на чиллерные системы и является основой для обеспечения эффективной работы оборудования. При плановом техническом обслуживании следует проверять змеевики конденсатора на предмет засорения и свободного прохода воздуха.
- Заправка хладагента. Коэффициент охлаждения зависит от надлежащего уровня хладагента в системе. Поддержание требуемого количества хладагента может значительно повлиять на энергоэффективность за счет снижения затрат на охлаждение почти на 5-10%.
- Поддержание воды в конденсаторе. Водяные контуры конденсатора, используемые с градирнями, должны поддерживать надлежащий расход воды в соответствии с проектом. Любой мусор, такой как песок, эрозионные твердые частицы и загрязняющие материалы, могут повлиять на нормальную работоспособность. Загрязнение или образование накипи препятствует потоку воды и сильно влияет на эффективность работы оборудования.
Автоматизация работы чиллера
Автоматизация и искусственный интеллект продолжает развиваться в повседневных практических приложениях. Такое оборудование, как чиллерные системы, выиграет от использования современного программного обеспечения, которое может обнаруживать потенциальные сбои до их возникновения. Прогнозируемое техническое обслуживание использует сбор и анализ рабочих данных системы, чтобы определить, когда следует предпринять действия по техническому обслуживанию до катастрофического отказа. Поскольку чиллеры являются сердцем большинства современных систем отопления, вентиляции и кондиционирования воздуха, предотвращение катастрофических отказов, приводящих к значительным «простоям», позволит сэкономить на расходах на аварийный ремонт, а также на репутации. Критическая роль, которую играет система чиллера, требует повышенного внимания. Автоматизация и система контроля минимизируют время простоя и повышают производительность оборудования.
При разработке современных климатических установок особое внимание уделяется проблеме энергосбережения. Количество энергии, потребляемой комплексом в течение годового жизненного цикла, является одним из основных критериев принятия решений при рассмотрении предложений, представленных на тендер. На сегодняшний день значительным потенциалом энергоэффективности является разработка и внедрение климатического оборудования, способного максимально точно покрывать график нагрузки в постоянно меняющихся условиях.
В то же время суточный график избытка тепла также неравномерно выражен с выраженным максимумом. Традиционно в чиллерах мощностью 20-80 кВт устанавливаются два идентичных компрессора и образуют два независимых контура хладагента. В результате машина может работать в двух режимах на 50% и 100% своей номинальной мощности. Новое поколение чиллеров холодопроизводительностью от 20 до 80 кВт позволяет осуществлять трехступенчатое регулирование мощности. В этом случае общая холодопроизводительность распределяется между компрессорами в соотношении 63% и 37%.
В чиллерах нового поколения оба компрессора подключены параллельно и работают в одном контуре хладагента, то есть имеют общий конденсатор и испаритель. Такое расположение значительно увеличивает эффективность преобразования энергии (KPI) контура хладагента при работе с частичной нагрузкой. Для таких чиллеров при 100% нагрузке и температуре наружного воздуха 25 ° C KPE = 4, а при 37% CPE = 5. Учитывая, что 50% времени блок работает с нагрузкой 37%, это дает значительную энергию. экономия.
Микропроцессорные контроллеры предназначены для эффективного внедрения в чиллеры новых решений, которые позволяют:
- контролировать все параметры работы оборудования.
- настроить заданную температуру воды на выходе из агрегата в соответствии с параметрами наружного воздуха, технологическим процессом или командами централизованной системы управления (диспетчера).
- выбирает оптимальный шаг регулирования мощности.
Эффективность работы чиллера сильно влияет на эксплуатационные расходы здания. Текущее плановое обслуживание представляет собой минимум с точки зрения управления объектом. Для профилактического обслуживания и оптимизации холодильной системы требуются оперативные данные в режиме реального времени.